Dear all, just another example on how to use the ELM327 together with an app, to interact with your car.

In the following example we’ll see how to read and cancel the DTCs, aka Data Trouble Codes, the error codes
issued when the car detects a malfunction.

There are plenty of ready made apps that can do the same job, but in this example you will manage everything
on your own.

Basically every car manufactured after the year 1996 should (must ?) feature the diagnostic protocol
KWP2000 with the UDS (Unified Diagnostic Services). The ELM327 is a microcontroller that has buried in its
core a lot of commands and interface protocols. It is typically integrated into a device that features an OBD
connector, so to be inserted directly into the OBD socket of the car, but | dont want to bother you about that
product, so I'll focus only on the app.

Therefore, the app exchanges commands and data back and forth to the ELM by means of the classic BT client
blocks.

The procedure to enter the “diagnostic mode” of a car is made by sending a specific sequence of commands
to its central computer (the Body Computer) via the OBD port, which istypically located below the steering
wheel, or hidden somewhere else in the dashboard. In my app this sequence is actuated by the procedure
“Caninit” that calls, in sequence, the requested commands .

do ("cal ‘SendText

laxt

o ATLO send do call Bluel

cal
call
W ATMO send -
call

1o ATHO send do call Blus!

1o ATSO_sand do call Bluet

(Wl ATSO_send -

= ATI send - |

EOATHO sond -

AT sond -

Y ATSP6_sond

CCIl Clk CAN Tx « B Timerinterval + BRI 1000

— N W e wpor e

(ool GRS AOCETD o RS

to ATEC_send do call Bluet
to ATl_send do call Blueto...

to ATMO_send do call Bluet

1o ATATZ send do call Blue
10 AISPE sand do call Blue

After the diagnostic mode is entered the app asks for reading the Data Trouble Codes (DTCs) by using the
UDS command 03 (“service” in the UDS jargon).

%) 1o CAN DTC The app sends the request to enter the “read
[=l BlustoothClient1 « BEELTG DTC” service

lext

Then waits for the answer from the car’s ECU
via ELM327

Then shows what has been received: no DTCs
or a maximum of three DTCs is shown.

The display looks like:

CAN message
DIC #1
DTC#2
DTC #3

The complete CAN message
received is shown here

A maximum of 3 DTCs is
shown here

RPM of your engine. Just to
see that it is working (*).

Speed of your car, see the
NOTE below (*)

Button to Erase all the
DTCs (Service 04))

Button to Read the DTCs
(Service 03)

(*) NOTE: These values (RPM and Speed) aren’t necessary for DTCs erasing but they come from a previous
app of mine (you can find it in the forum) and | left them if you want to go a bit deeper in the CAR diagnostic
protocol.

The most interesting procedure is the DTC showing and decoding from the received UDS string:

1.

At fisrt it verifies if the message contains the string “NO DATA”, which means that the ELM 327 has
unsuccessfully accomplished the data exchange. In this case a warning message is shown in the DTC
labels.

If the incoming message is good, then it verifies whether the message is shorter than 4 characters. If
yes another warning message is shown, if longer of equal to 4, it starts to decode it.

If the fisrt two chars are “00” this means that no DTC are present, therefore the ERASE DTC button is
left not enabled and the procedure does anything else.

If the first two characters are different from “00” this means that some DTCs are present (one or
more), the nit starts to decode them. The DTC in the uds rules, is always composed by two bytes
whose most significant bits (B7 and B6 of the high byte) represent the source of error (Engine, Body,
Chassis or Unknown), while the remaining are the coded number of the error. On the web one can
find the complete list of DTC’s because they are standardized by the UDS protocol.

Ifa t least one DTC is received, then the button DTC cancel is enabled. When one presses that button
a request to cancel the DTCs (service 04) is called. Please note that each request is demanded to a

clock and it is not done directly by the “button hit” event, in order to have only one procedure that
sends and receives from the ELM, thus avoiding superimposition of requests.

At 1 nlobal carinp - M=« I 4)
T Giobe Burvel - LI globi caring - |
start | EB
length | 3
o Global Buval © |

compare texts | get PErcirscns BN [

segment lexi
start

length

ant text ¢ global carinp ©
slal CI.'
4
s empty | trim gat
 RUBEE-TE global BufVal + |

-4 global DTC_coaverted -

The Tx/Rx clock procedure is here:

The clock is temporary stopped to
avoid queing of multiple events

when [[ESYIEED Timer

Coll CIK_CAN_Tx - | TimerEnabled - LR false -

=T CAN_RPM - |

The RPM and the Speed data are
call

requested and shown

=1 global Demux - K% ""=1 global Demux - I n'

=4 global Demux - 0 The DTC read or erase are requested
S Voo D : less often (1/10) than the RPM and
10
S_e; LEpLORs o | Speed, to not overload the bus of
=3 /=¥ global DTC_Cancel ~

messages exchange
- =W CAN_DTC_ERASE -

-
éel global DTC_Cancel - [0 false « | \ 4}

v The DTC read or erase are
eise | (o] i + =1 global DTC_Read - performed only if the relevant
= =Tl CAN_DTC - button has been hit

:et global DTC_Read - LMl false - |

set) o @ The Timer is reloaded with its perlOd
(50 ms) and restarted
set : G, frue -

The typical ELM327 device (Amazon):

To discover its BT address you shall plug it into the
OBD port, so to give it power supply, then start the
SBT app (see Note below) on your phone, or tablet
and select the menu options /Terminal/Devices/
At that moment he list of availabe devices is shown
and you sall select OBD2 (see below).

40:F4:07:49:E1:0C

OBDII Tthis is the BT address that you shall set into your
app

_ 00:1D:A5.0C:51:11

Please take care that the BT shall be the “classic” one, not the BLE. To be sure of that, it is better to choose a
device featuring the BT 2.0 (which is older than the more recent 4.0 or 5.0, but for sure it isn’t BLE).

Once discovered, the BT address shall be written tinto a file called BT_Address.txt, that shall be stored into
tah Application Specific Directory (ASD) of the app. It shall be structured like the following:

00:1D:A5:0C:51:11!
98:D3:51:F9:37:BF Simulator

Use notes: put the current BT address in the first row ending with a !
in the other rows (after the !) the spare ones or comments. The two lines above and below are not written into

the file

whot LK GorTex

o [=t AT o O e | et

a])

Tl TrvCona + |

| oo EINTED

Once the text read from the file is available, the BT
address is fetched and stored into a global variable
used by the BT client initialization

CRE gicoa einy - LRI

21 gioval BTconnected - B = - | taise -
00 set [T 10 || Selectist fem dst

Wil best

moex
cat CTETARS Conoect

aldress

advess

= giobai B1_bur |

i 20031 BT _3aar -

Y giobai B1_aoar -

If, after two attempts, the primary
address doesn’t work, it tries with a
simulator (in my lab an HCO5 that
simulates the ELM). If you don’t have
this on your bench, just remove these
blocks.

LY global refry « L P cianal ety - RN 1
s a6 [
=T N Notifier] - JESTETO
il 5= 00T TROUBLES
o EILTER

If neither the primary neither the
simulator IP address is working, it exits
out of the app.

The DTC convert performs the conversion from the UDS format to a readable one.

1. The two bytes containing the DTC are masked off so to extract the two most significant bits of the
high byte. The two bits, which can range from decimal 0 to 3, are used as pointer to a list from which
the source of the error is extracted (see beolw the list). Since the lists in Al2 start from 1, and not 0,
the extracted pointer is incremented by 1).

2. If the pointer to the list exceeds the list’s length (i.e. by a misdecoding), a warning message is raised

3. If the Category of the DTC belongs to those into the list, the remaining 14 bits of the two bytes,
reperesenting the DTC, are finally converted and joined, as a string, to be shown into a label.

4. This procedure plays with decimal and exadecimal numbers representations, so to make “readable”

the DTC.
[o |« I Toxt + JUCSRREE UETE g hex to Dase 10 + BT 2 global Burva
B iotal OTC_code - L JIMEIN bawise and - JREZS P nex to base 10 - LU= gicoai Burval - 1
B8 L O1Coum « M Toxt « LRSS giobal OTC_code - .
&1 clobal DTC_code - 1 e o T
35 Y giobal D1C code + M= LR 4 {0 B] gbsi DTC Catogory - 5
N goval o7 _comverica - [OTC-notfounc ;
CEE T global DTC_cooverterd « REMINETE R LR 2
ST piobal D1 codo - 3
B giovai D1C_number - LIMMEIR bewse and - IR Ta e g X 1o base 10 - R [od global Burval -
= gioval DTC_converied - L SIMCII™ M- 1 giopal DIC_converted - 4
‘0°

The list containing the DTC Categories

The BT receiving procedure receives one byte at a time from the ELM, until the string terminator character
“>" is sent by the ELM. This character is set by default into the ELM firmware and cannot be changed,
therefore the app must wait for that character so to detect a message complete. MOreover to avoid to remain
stuck in waiting the >” character, a timeout is also provided: when it reaches the value 1000, the waiting is
interrupted, an error mesasge is issued and a restart BT communication is perfomed (Tryconn procedure).

BytesAvaiableToReceive £ (D
= ¥ global carinp_buf + LEEE- B BiuetoothClient ReceiveText
numberOftiyles = E)
=T iovai carnp - LIMIEN M1 giobal cannp -
Y giobal cannp_buf *

P global BT _Tout - 1
compare texts. | get ETITIETT AT €53 83"

S

sel FEEEACTER 0 o e (AT ¢ | 0

Sl L BT TOUT - Ji Text - RIS -
~—-

Clears the input buffers

Resets the timeout

Presets the flag of
message incomplete

Waits for a complete
message or timeout

Gt [CAN It

See the description above

Checks if message is complete

No message, retries the connection
and resends the Start Diagnostic
sequence to the car’s ECU

NOTE: all the procedures exchange data by means of global varables, no local variables are used.
CREDITS:

e Anke for her MyFonts extension (for 7 segments font) based on Ken’s one
e Taifun for his extensions (2) to keep the screen alive and to show the status of the battery

