
Dear all, just another example on how to use the ELM327 together with an app, to interact with your car.

In the following example we’ll see how to read and cancel the DTCs, aka Data Trouble Codes, the error codes

issued when the car detects a malfunction.

There are plenty of ready made apps that can do the same job, but in this example you will manage everything

on your own.

Basically every car manufactured after the year 1996 should (must ?) feature the diagnostic protocol

KWP2000 with the UDS (Unified Diagnostic Services). The ELM327 is a microcontroller that has buried in its

core a lot of commands and interface protocols. It is typically integrated into a device that features an OBD

connector, so to be inserted directly into the OBD socket of the car, but I dont want to bother you about that

product, so I’ll focus only on the app.

Therefore, the app exchanges commands and data back and forth to the ELM by means of the classic BT client

blocks.

The procedure to enter the “diagnostic mode” of a car is made by sending a specific sequence of commands

to its central computer (the Body Computer) via the OBD port, which istypically located below the steering

wheel, or hidden somewhere else in the dashboard. In my app this sequence is actuated by the procedure

“Caninit” that calls, in sequence, the requested commands .

After the diagnostic mode is entered the app asks for reading the Data Trouble Codes (DTCs) by using the

UDS command 03 (“service” in the UDS jargon).

The app sends the request to enter the “read

DTC” service

Then waits for the answer from the car’s ECU

via ELM327

Then shows what has been received: no DTCs

or a maximum of three DTCs is shown.

The display looks like:

(*) NOTE: These values (RPM and Speed) aren’t necessary for DTCs erasing but they come from a previous

app of mine (you can find it in the forum) and I left them if you want to go a bit deeper in the CAR diagnostic

protocol.

The most interesting procedure is the DTC showing and decoding from the received UDS string:

1. At fisrt it verifies if the message contains the string “NO DATA”, which means that the ELM 327 has

unsuccessfully accomplished the data exchange. In this case a warning message is shown in the DTC

labels.

2. If the incoming message is good, then it verifies whether the message is shorter than 4 characters. If

yes another warning message is shown, if longer of equal to 4, it starts to decode it.

3. If the fisrt two chars are “00” this means that no DTC are present, therefore the ERASE DTC button is

left not enabled and the procedure does anything else.

4. If the first two characters are different from “00” this means that some DTCs are present (one or

more), the nit starts to decode them. The DTC in the uds rules, is always composed by two bytes

whose most significant bits (B7 and B6 of the high byte) represent the source of error (Engine, Body,

Chassis or Unknown), while the remaining are the coded number of the error. On the web one can

find the complete list of DTC’s because they are standardized by the UDS protocol.

5. Ifa t least one DTC is received, then the button DTC cancel is enabled. When one presses that button

a request to cancel the DTCs (service 04) is called. Please note that each request is demanded to a

A maximum of 3 DTCs is

shown here

The complete CAN message

received is shown here

Button to Read the DTCs

(Service 03)

Button to Erase all the

DTCs (Service 04))

RPM of your engine. Just to

see that it is working (*).

Speed of your car, see the

NOTE below (*)

clock and it is not done directly by the “button hit” event, in order to have only one procedure that

sends and receives from the ELM, thus avoiding superimposition of requests.

The Tx/Rx clock procedure is here:

The typical ELM327 device (Amazon):

Please take care that the BT shall be the “classic” one, not the BLE. To be sure of that, it is better to choose a

device featuring the BT 2.0 (which is older than the more recent 4.0 or 5.0, but for sure it isn’t BLE).

The clock is temporary stopped to

avoid queing of multiple events

The RPM and the Speed data are

requested and shown

The DTC read or erase are requested

less often (1/10) than the RPM and

Speed, to not overload the bus of

messages exchange

The DTC read or erase are

performed only if the relevant

button has been hit

The Timer is reloaded with its period

(50 ms) and restarted

To discover its BT address you shall plug it into the

OBD port, so to give it power supply, then start the

SBT app (see Note below) on your phone, or tablet

and select the menu options /Terminal/Devices/

At that moment he list of availabe devices is shown

and you sall select OBD2 (see below).

Tthis is the BT address that you shall set into your

app

Once discovered, the BT address shall be written tinto a file called BT_Address.txt, that shall be stored into

tah Application Specific Directory (ASD) of the app. It shall be structured like the following:

__

00:1D:A5:0C:51:11!

98:D3:51:F9:37:BF Simulator

Use notes: put the current BT address in the first row ending with a !

in the other rows (after the !) the spare ones or comments. The two lines above and below are not written into

the file

Once the text read from the file is available, the BT

address is fetched and stored into a global variable

used by the BT client initialization

If, after two attempts, the primary

address doesn’t work, it tries with a

simulator (in my lab an HC05 that

simulates the ELM). If you don’t have

this on your bench, just remove these

blocks.

If neither the primary neither the

simulator IP address is working, it exits

out of the app.

The DTC convert performs the conversion from the UDS format to a readable one.

1. The two bytes containing the DTC are masked off so to extract the two most significant bits of the

high byte. The two bits, which can range from decimal 0 to 3, are used as pointer to a list from which

the source of the error is extracted (see beolw the list). Since the lists in AI2 start from 1, and not 0,

the extracted pointer is incremented by 1).

2. If the pointer to the list exceeds the list’s length (i.e. by a misdecoding), a warning message is raised

3. If the Category of the DTC belongs to those into the list, the remaining 14 bits of the two bytes,

reperesenting the DTC, are finally converted and joined, as a string, to be shown into a label.

4. This procedure plays with decimal and exadecimal numbers representations, so to make “readable”

the DTC.

The list containing the DTC Categories

1

1

2

3

4

The BT receiving procedure receives one byte at a time from the ELM, until the string terminator character

“>” is sent by the ELM. This character is set by default into the ELM firmware and cannot be changed,

therefore the app must wait for that character so to detect a message complete. MOreover to avoid to remain

stuck in waiting the >” character, a timeout is also provided: when it reaches the value 1000, the waiting is

interrupted, an error mesasge is issued and a restart BT communication is perfomed (Tryconn procedure).

The following procedure waits for a complete answer from ELM (or exits for timeout)

Clears the input buffers

Resets the timeout

Presets the flag of

message incomplete

Waits for a complete

message or timeout

See the description above

Checks if message is complete

No message, retries the connection

and resends the Start Diagnostic

sequence to the car’s ECU

NOTE: all the procedures exchange data by means of global varables, no local variables are used.

CREDITS:

• Anke for her MyFonts extension (for 7 segments font) based on Ken’s one

• Taifun for his extensions (2) to keep the screen alive and to show the status of the battery

