
Configuring Bluetooth HC-05 in AT mode with Arduino Uno

 The HC-05 module is an easy to use Bluetooth SPP (Serial Port Protocol) module, designed for
transparent wireless serial connection setup [1]. In order to configure the module, it is necessary to
enter into AT command mode and to transmit data the Bluetooth module will need to be out of AT
command Mode.

AT mode refers to the form of communication to the HC-05 Bluetooth Module. AT Commands

are short for ATtention Commands which is a command language used for modems known as the Hayes

command set. Hayes command set is a specific command language originally developed by Dennis

Hayes for the Hayes Smartmodem 300 baud modem in 1981 [2]. The HC-05 Bluetooth Module was used

due to its ability to be configured as Master or Slave mode as well as adding a password to the module.

Initially for this project the HC-06 module was going to be used which is only in Slave Mode and it does

not have the ability to be configured.

Parts used to configure are the following:

• 2 HC-05 Bluetooth Modules

• Arduino Uno

• Breadboard

• 4 wires

• USB A to B cable

• Computer

• open-source Arduino Software (IDE)

 To enter AT Command mode using an Arduino Uno wired to a HC-05 Bluetooth Module one

must first familiarized with the physical Bluetooth Module.

Figure 1. HC-05 Bluetooth Module

 The Data sheet for the module can be found at:

https://www.itead.cc/wiki/Serial_Port_Bluetooth_Module_(Master/Slave)_:_HC-05 which has a list of

AT commands as well as specifications of the module. The Module needs a minimum of 3.3V to work

and a maximum of 6V. The default Baud rate is 38400 and for this project out of the 6 pins that the

module has, the outermost pins (STATE and EN) will not be used. The module can communicate up to 30

feet. As seen in Figure 1 the pins that will be used are RX, TX, GND, VCC. Additionally, from figure 1 the

front of the has a red LED and a Button Switch.

 The red LED has 3 continuous flashing modes: ON for 2 seconds and Off for 2 seconds (AT

Command Mode), fast blinking (searching for a connection), Off for 2 seconds and blinks twice

(connected). Figure 2 as well as Table 1 show the connections needed to configure the Bluetooth

Module.

HC-05 Bluetooth Module Pin Arduino Uno Pin

VCC 5V

GND GND

TXD TXD

RXD RXD
Table 1. Connection between the pins of the Bluetooth Module and Arduino Uno

To enter AT Command Mode the following must be done:

1. Arduino Uno must be connected to the Computer via USB and Arduino software opened

2. The Module must be disconnected from Arduino

3. Arduino needs to have a Blank Sketch downloaded

 void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

4. The Button Switch must be held pushed and simultaneously connected to the Arduino as seen in

figure 2 (This is done most easily if using a breadboard)

Figure 2. Entering AT Command Mode Schematic

5. The Button Switch can be released once connected to Arduino and the Bluetooth Module LED

should be blinking ON for 2 seconds and Off for 2 seconds indicating it has entered AT Command

Mode

6. The Correct COM Port should be Selected and Serial Monitor needs to be opened as seen in

figure 3

7. 38400 baud rate should be selected and “Both NL & CR” as seen in figure 4

Figure 3. Selecting COM port and Location of Serial Monitor

Figure 4. Arduino Serial Monitor

AT Command Mode

Using the commands found in reference [2] the following table 2 and table 3 are formed for

Master and Slave Configuration and Table 4 and Table 5 are formed for fixed connection. Each Module is

connected one at the time and must be in AT command Mode as explained above. The module is

connected to the Arduino with a Blank Sketch and configure using the selected AT commands in tables

2,3,4,5. Figure 5 shows a screen capture of the Serial Monitor screen as a result of following Table 2 as

an example of what to expect when using the Serial Monitor. Commands have to be typed in capital

letters, when a command is typed it will disappear and a response from the module appears.

Commands Typed Response from Module Info

AT Error: (0) Make sure module in AT mode from Red LED
blinking on 2 seconds and off 2 seconds

AT OK Communication Stablished
AT+ORGL OK Resets Module to factory settings

Slave mode, pin code :1234, device name:
H-C-2010-06-01 ,Baud 38400bits/s.

AT+UART=38400,0,0 OK Setting Baud Rate
AT+UART? +UART:38400,0,0

OK
Response of Module indicating set Baud Rate

AT+ADDR? +ADDR:18:91:d8fff6
OK

Module Address Should be written for later use

AT+NAME=Latch-M OK Setting name for Module as Latch-M
AT+ROLE=1 OK Setting Module as Master Mode
AT+ ROLE? +ROLE:1

OK
Returns That it is in Master Mode

AT+PSWD=LATCH1 OK Setting Password
AT+ PSWD? +PSWD:LATCH1

OK
Returns that password is LATCH1

(Password must match the Slave Mode Module
Password)

Table 2. Configuration used for the Master Mode Module

Commands Typed Response from Module Info

AT Error: (0) Make sure module in AT mode from Red LED
blinking on 2 seconds and off 2 seconds

AT OK Communication Stablished
AT+ORGL OK Resets Module to factory settings

Slave mode, pin code :1234, device name:
H-C-2010-06-01 ,Baud 38400bits/s.

AT+UART=38400,0,0 OK Setting Baud Rate
AT+UART? +UART:38400,0,0

OK
Response of Module indicating set Baud Rate

AT+ADDR? +ADDR: 18:91:d9198e
OK

Module Address Should be written for later use

AT+NAME=Latch-S OK Setting name for Module as Latch-M
AT+ROLE=0 OK Setting Module as Slave Mode

AT+ ROLE? +ROLE:0
OK

Returns That it is in Slave Mode

AT+PSWD=LATCH1 OK Setting Password
AT+ PSWD? +PSWD:LATCH1

OK
Returns that password is LATCH1

(Password must match the Master Mode
Module Password)

Table 3. Configuration used for the Slave Mode Module

Table 2 and 3 will result in different address since each Bluetooth module is has a different address and

changing the name and password is optional. Once one module is set as a Master and the other as a

Slave the modules will connect automatically as long both are ON and within 30 feet assuming default

password of 1234 is kept. If the password and name of each module are change the following Table 4

and Table 5 can be followed to set the modules to connect to each other with the new password and

name.

Commands Typed Response from Module Info

AT Error: (0) Make sure module in AT mode from Red LED
blinking on 2 seconds and off 2 seconds

AT OK Communication Stablished
AT+CMODE=0 OK Set to connect to a fixed address
AT+CMODE? +CMOD:0

OK
Confirms that module is set to connect to a

fixed address

Figure 5. Screenshot of Serial Monitor of Configuring Master Mode Module

AT+BIND=18,91,d9198e OK Using the address from Slave mode module
from Table 3 the fixed address to connect to is
set (Notice that the address uses , instead of :)

AT+BIND? +BIND:18:91:d9198e
OK

Confirms that it is set to connect to the set
address

Table 4. Table for Master Mode Module Auto connect to Slave Mode Module

Commands Typed Response from Module Info

AT Error: (0) Make sure module in AT mode from Red LED
blinking on 2 seconds and off 2 seconds

AT OK Communication Stablished
AT+CMODE=0 OK Set to connect to a fixed address
AT+CMODE? +CMOD:0

OK
Confirms that module is set to connect to a

fixed address

AT+BIND=18,91,d8fff6 OK Using the address from Slave mode module
from Table 3 the fixed address to connect to is
set (Notice that the address uses , instead of :)

AT+BIND? +BIND: 18:91:d8fff6
OK

Confirms that it is set to connect to the set
address

Table 5. Table for Slave Mode Module Auto connect to Master Mode Module

Connecting HC-05 Master Mode Module to a HC-05 Slave Mode Module

 Once both Modules have been connected they can be wired to their own Arduino Uno Board

with the Arduino Uno boards having the desired Code and start transmitting data. The Master Module is

wired the same way that the module was wired in figure 2 to enter AT Command Mode. The Slave Mode

Module will have the TX and RX wires switch as seen in Figure 6 and Table 6.

HC-05 Bluetooth
Master Mode
Module Pins

Arduino Uno Master
Board Pins

HC-05 Bluetooth
Master Mode Module

Pins

Arduino Uno Slave
Mode Board Pins

VCC 5V VCC 5V

GND GND GND GND

TXD TXD TXD RXD

RXD RXD RXD TXD
Table 6. Pin connectors for HC-05 Bluetooth Module to Arduino Uno

 When downloading code to Arduino Uno the HC-05 Module must be disconnected otherwise

the download will not complete. Unless the Arduino Uno will not be modified in the future the HC-05

Bluetooth Module should not be permeably connected. A six pin female header as seen in figure 7

Figure 6. Master and Slave Mode Module Wiring Configuration

Figure 7. Example of 6-pin Female Header [3]

would be ideal solution for mounting Arduino so it can be removed when loading new code to Arduino

Uno.

Troubleshooting HC-05 Bluetooth Module

Problem Solution

Module red LED NOT blinking on for 2 seconds
and off for 2 seconds, indicating that it is in AT
Command Mode

• Remove power from System to check
wires to make sure properly wired as
seen in Figure 2. If properly connected
apply power to system again

• Disconnect Module and Reconnect while
holding the Button Switch and releasing
the Button Switch after it is Connected

Serial Monitor not communicating with HC-05
Bluetooth Module

• Make sure Arduino Uno has Blank code
downloaded

• Make sure red LED in module blinking 2
seconds and off for 2 seconds, indicating
that it is in AT Command Mode

• Make sure as seen in Figure 3 that the
correct COM Port is selected

• Make Sure Wired Correctly as seen in
Figure 2

Code not downloading to Arduino Uno • Make sure HC-05 Bluetooth is removed
from the system while the code
downloads

• Make sure code does not have errors

• Make Sure USB is properly connected to
computer

• Reset Arduino and try download again

• Restart Arduino software and re-
download code

HC-05 Bluetooth Module getting HOT • Immediately but Safely remove power
from system

• Wait until module has cooled down
because now Module is a Burning
Hazard

• After it has cooled Check wiring as seen
in figure 6

• If module not turn On it will need to be
replaced

Master and Slave Mode Bluetooth Modules not
pairing

• Make sure Modules with in 30 feet of
each other

• Check power and connections as seen in
figure 6

• Confirm that Master and Slave Modules
are properly wired as seen in Figure 6
especially look at RXD and TXD pins

• Reset to factory settings and reconfigure
Modules

Latch Mechanism Control Box Quick Overview

 The Latch Mechanism Control Box will be powered from the orange power rails at the

observatory. There is a 3 pin Female connector at the bottom of the control box labeled AC IN. On the

Left hand side there is a 3 pin Female connector labeled AC OUT which controls the Dome Slit motor. At

the top edge of the Control Box there is a 12pin connector which connects to the motors and Pressure

Sensor as seen in the schematic of Figure 8.

 The Control Box has a toggle switch in the front which can be moved upward or downward A. If

positioned upward towards the ‘M’ it will be in Manual mode. In manual mode the power will enter the

bottom of the control box and directly exit to the output to the Slit Motor. If the toggle switch is

propositioned downward towards the ‘A’ power will enter the box and distributed inside the control

box powering the 12V power supply. From the 12V power supply the Arduino is turned on along with

the Motor shield which the Motors, Pressure Sensor and the Slave Mode Bluetooth Module are

powered from as seen in the schematic of Figure 8.

 In order for the Control box to Function The Arduino inside the Control Box will receive Data

from the Master Mode Bluetooth Module. In the Test set up it was attached to an Arduino with push

buttons sending the data through the Arduino as seen in Figure 9. Ideally in the future the data would

be received from a Bluetooth module that is with the Main Control Box at the Observatory.

Coding

 Here is an example code for using two HC-05 The following Code was found at

http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-

bind-and-link/ [4], which uses a Master and Slave Bluetooth module. This Link was used to get started

with the Code used for the Latch Mechanism Control Box.

The following components were used inside the Latch Mechanism Control Box where the Slave

Mode Bluetooth was placed:

• Arduino Uno

• Adafruit V2 Motor Shield

• HC-05 Bluetooth Module (Configured as Slave Mode)

• PS-WP12LPS30 30W 12VDC Power Supply

• 1M ohm Resistor

• 2 5v SPST Relays

• 2 28V DPDT Relays

The following components is set up to be connected to the Latch Mechanism Control Box

http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-bind-and-link/
http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-bind-and-link/

• DC Motor-RS775-5 Motor With Encoder For PG71 and PG188 Gearbox with Bane Bots P60S-44-

57 16:1 Gear Box attached

• Pressure Sensor-Flexiforce Pressure Sensor - 100lbs.

• Bipolar Stepper Motor-Stepping Motor Nema 17 Stepping Motor 26Ncm Step angle 1.8 Degrees

The following table 7 shows the pins that the 12 pin connector and what component it connects to

externally.

Table of connections of the 12 Pin connector located on the top of the
Latch Mechanism Control Box

Pin
Connection on Motor
Shield Connection to Components

1 M3 Side A of Coil 1 of Bipolar Stepper Motor

2 M3 Side B of Coil 1 of Bipolar Stepper Motor

3 M4 Side A of Coil 2 of Bipolar Stepper Motor

4 M4 Side B of Coil 2 of Bipolar Stepper Motor

5 M1 DC Motor (-)

6 M1 DC Motor (+)

7 5V

Pressure Sensor Most Bottom Pin when
looking at sensor Horizontal and Words
are readable and not backwards

8 Analog 0

Pressure Sensor Most Top Pin when
looking at sensor Horizontal and Words
are readable and not backwards

9 Empty Empty

10 Empty Empty

11 Empty Empty

12 Empty Empty
Table 7. Pin assignments of 12 pin Connecter on Latch Mechanism Control Box to External Components

Figure 8 shows the Schematic of the Latch Mechanism Control Box which was build inside the Latch

Mechanism Control Box.

The Code for the Arduino Uno inside the Latch Mechanism Control Box that uses the HC-05 Bluetooth

Module in Slave Mode was Built using the following links as references:

• Adafruit Motor Shield software and library download-https://learn.adafruit.com/adafruit-

motor-shield-v2-for-arduino/install-software

• Motor Shield Overview- https://learn.adafruit.com/adafruit-motor-shield-v2-for-

arduino/overview

• Stepper Motor- https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/using-stepper-

motors

• DC Motor- https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/using-dc-motors

• Pressure Sensor - https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr

The above links are very useful and also have information about libraries that would need to be

download in order to properly use the Adafruit Motor Shield V2 with the Arduino Uno.

 /*P17310 Latch Arm Control Box

 * *** TO LOAD CODE ONTO ARDUINO MAKE SURE BLUETOOTH MODULE IS DISCONNECTED

 * This Code is for the Ardunio Inside the Latch Mechanism Control Box which is the Slave mode

Bluetooth Module

 * THe set up for the control box can be found in the following webpage

Figure 8. Schematic of Latch Mechanism Control Box

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview
https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr

 *

http://edge.rit.edu/edge/P17310/public/Integrated%20System%20Build%20%26%20Test%20wi

th%20Customer%20Demo

 * This Code will do the following given the following inputs from the Master Mode Arduino

through Bluetooth

if given '1' Power Relay Turns On Direction Relay Turns On

if given '2' Power Relay Stays On and Direction Relay Turns Off

if given '3' Both Power and Dirrection Relay Turn Off, Pressure Sensor Takes a Reading

if given '4' DC Motor CounterClockwise Pulse

if given '5' DC motor Clockwise Pulse

if given '6' Sttepper Motor Rotates and lifts the Latch Arm Hook, and brings it back down

*/

#include <Wire.h>

#include <Adafruit_MotorShield.h> //Motor Shield library

#include "utility/Adafruit_MS_PWMServoDriver.h" //Motor Shield library

Adafruit_MotorShield AFMS = Adafruit_MotorShield(0x61); //Address to program to the

Adafruit Motor Shield

Adafruit_StepperMotor *myStepperMotor = AFMS.getStepper(200, 2); // stepper motor using

M3 and M4 on the motor shield

//the stepper motor is 1.8 degrees so one revolution is 200 steps

Adafruit_DCMotor *myMotor = AFMS.getMotor(1); //Dc motor using M1 on motor shield

int fsrPin = 0; // the FSR and 1M resistor pulldown are connected to a0 for pressure sensor

int fsrReading; // the analog reading from the FSR resistor divider

int ddirection = 12; //direction relay pin digital 12

int dpower = 13; //power relay pin digital 13

int state = 0;

void setup() {

 // Setup 2 pins as OUTPUT

 pinMode(ddirection, OUTPUT);

 pinMode(dpower, OUTPUT);

digitalWrite(ddirection, LOW); //direction for relay system

digitalWrite(dpower, LOW); //power for relay system

 Serial.begin(38400); // Communication rate of the Bluetooth module has to match the Slave

Mode communication Rate

 AFMS.begin();

 myStepperMotor->setSpeed(20); // Stepepr Motor 20 rpm

 AFMS.begin(); //frequency set at 1.6 Khz

 myMotor->setSpeed(55); //DC motor 55 rpm (max value is 250 min is 0)

}

void loop() {

 if(Serial.available() > 0){ // Checks whether data is comming from the serial port

 state = Serial.read(); // Reads the data from the serial port

 }

if (state =='1') {

 Serial.println("Relay Allowing for Dome Slit to Open");

 digitalWrite(ddirection, HIGH); // Turn direction relay high

 digitalWrite(dpower, HIGH); // turn power relay high

 state = 0;

}

if (state =='2') {

 Serial.println("Relay Allowing for Dome Slit to Close");

 digitalWrite(dpower, HIGH); // turn Power Relay High

 digitalWrite(ddirection, LOW); // Turn direction Relay Low

 state = 0;

}

if (state =='3') {

 digitalWrite(ddirection, LOW); // Turn Dirrection Relay Off

 digitalWrite(dpower, LOW); // Turn off Power Relay off

 myMotor->run(RELEASE);

 Serial.println("Pressure Sensor for the Dome Slit Position If Pressure Sensor Anlog Reading

less than 500 It is Open, Otherwise it Closed");

for (int x = 0; x<1; x++){//scans the for loop once

 fsrReading = analogRead(fsrPin); //recieves abalog reading

 Serial.print("Analog Reading = ");

 Serial.print(fsrReading); // the raw analog reading output

 // We'll have a few threshholds, qualitatively determined

 if (fsrReading > 500) {

 Serial.println(" Dome Slit Closed"); // If preswsure reading is ablove 500 the Slit is Closed

 } else {

 Serial.println(" Dome Slit Opened"); //If preswsure reading is ablove 500 the Slit is open

 }

 Serial.println(); // print black line

 delay(10);}

 state = 0; //

 }

if (state =='4') {

 Serial.println("DC Motor Forward Motion");

 myMotor->run(BACKWARD);//Runs DC motor in reverse for 200ms

 delay (200);

 myMotor->run(FORWARD); //Runs DC motor forward for 25ms

 delay (25);

 myMotor->run(RELEASE);

 state = 0;

}// wait for a second

if (state =='5') {

 Serial.println("DC Motor Backward Motion");

 myMotor->run(FORWARD); //Runs DC motor for 255ms

 delay (255);

 myMotor->run(BACKWARD);//Runs DC motor in reverse for 15ms

 delay (15);

 myMotor->run(RELEASE); //Power to DC motor is cut off

 state = 0;

}// wait for a second

if (state =='6') {

 Serial.println("Latch Mechanism Stepper Motor");

 myStepperMotor->step(180, FORWARD, DOUBLE); //Stepper Motor moves forward for 180

steps in double step

 myStepperMotor->release(); //power is cut to Stepper so it does not heat up while holding

position

 delay(3000); //waaits 3 seconds before proceding

 myStepperMotor->step(180, BACKWARD, DOUBLE); //Stepper Motor moves Reverse for 180

steps in double step

 myStepperMotor->release();//power is cut to Stepper so it does not heat up while holding

position

 delay(2000);// waits 2 seconds to finsh function

 state = 0; //

 }

}

The goal of the code is for the Arduino Uno in the Latch Mechanism Control Box to receive Data from

the Main Control Box where the DAQ is located via Bluetooth. The data received would result in various

actions as seen in table 8. In data in table 8 is of the way the current code is set up where it receives a

value from 0 to 6 and each value represents a different output.

Data Value Received Via Bluetooth Output

0 Power Relay Turns On Direction Relay Turns On,
Dome Slit Opens

1 Power Relay Stays On and Direction Relay Turns
Off Dome Slit Closes

2 Both Power and Direction Relay Turn Off, Dome
Slit Stops Moving. Arduino Receives a Reading

from thre Pressure Sensor

3 DC Motor of the Latch Arm Rotates Clockwise for
100ms at 125 RPM

4 DC Motor Counterclockwise Pulse

5 DC motor Clockwise Pulse

6 Stepper Motor Rotates and lifts the Latch Arm
Hook, and brings it back down

Table 8. Input and Output of Latch Mechanism Control Box

 For the Purpose of testing a circuit with 6 push buttons was built using 1k Resistors, push buttons, the

HC-05 Bluetooth Module in Master Mode. The Schematic can be seen in Figure 9. The user sends a

signal by pressing one of the six push buttons and follows the input and outputs of Table 8. Moving

From this test set up the DAQ would send a signal to the Arduino rather than a user pressing a push

button. The signal is sent from the Master Mode Bluetooth to the Slave Mode Bluetooth inside the

Control Box.

The following code was downloaded to the Arduino of Figure 9. This code was modified from a

Debouncing Code found at one of the tutorials at the Arduino website. [5] The purpose of the code is to

take a single reading with a push button is pressed and a value is sent though the Master Mode

Bluetooth Module to the Bluetooth inside the Latch Mechanism Control box.

/*P17310 Latch Arm Demo For 2017 Imagine RIT

 * ******* The following code was modified from the existing code for Debouncing as seen

below

 * * *** TO LOAD CODE ONTO ARDUINO MAKE SURE BLUETOOTH MODULE IS DISCONNECTED

 * **THis code was used for the Demo at IMagine RIT 2017. Futher information on the exhibit

got to

Figure 9. Schematic of Demo and Test Set up of the Master Mode Bluetooth

 *

http://edge.rit.edu/edge/P17310/public/Customer%20Handoff%20%26%20Final%20Project%20

Documentation

 * This Code is for the Arduino and Master Mode Bluetooth Module

 *

 *

 *

 Debounce

 Each time the input pin goes from LOW to HIGH (e.g. because of a push-button

 press), the output pin is toggled from LOW to HIGH or HIGH to LOW. There's

 a minimum delay between toggles to debounce the circuit (i.e. to ignore

 noise).

 by David A. Mellis

 modified 30 Aug 2011

 by Limor Fried

 modified 28 Dec 2012

 by Mike Walters

 modified 30 Aug 2016

 by Arturo Guadalupi

 This example code is in the public domain.

 http://www.arduino.cc/en/Tutorial/Debounce

 */

#define led1 8

// constants won't change. They're used here to

// set pin numbers:

const int buttonPin = 2; // the number of the pushbutton pin Digital 2

const int buttonbPin = 3; // the number of the pushbutton pin Digital 3

const int buttoncPin = 4; // the number of the pushbutton pin Digital 4

const int buttondPin = 5; // the number of the pushbutton pin Digital 5

const int buttonePin = 6; // the number of the pushbutton pin Digital 6

const int buttonfPin = 7; // the number of the pushbutton pin Digital 7

const int ledPin = 13; // the number of the LED pin

// Variables will change:

int ledState = HIGH; // the current state of the output pin

int state = 20;

int buttonState; // the current reading from the input pin

int buttonbState; // the current reading from the input pin

int buttoncState; // the current reading from the input pin

int buttondState; // the current reading from the input pin

int buttoneState; // the current reading from the input pin

int buttonfState; // the current reading from the input pin

int lastButtonState = LOW; // the previous reading from the input pin

int lastButtonbState = LOW; // the previous reading from the input pin

int lastButtoncState = LOW; // the previous reading from the input pin

int lastButtondState = LOW; // the previous reading from the input pin

int lastButtoneState = LOW; // the previous reading from the input pin

int lastButtonfState = LOW; // the previous reading from the input pin

// the following variables are unsigned long's because the time, measured in miliseconds,

// will quickly become a bigger number than can be stored in an int.

unsigned long lastDebounceTime = 0; // the last time the output pin was toggled

unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers

unsigned long lastDebouncebTime = 0; // the last time the output pin was toggled

unsigned long debouncebDelay = 50; // the debounce time; increase if the output flickers

unsigned long lastDebouncecTime = 0; // the last time the output pin was toggled

unsigned long debouncecDelay = 50; // the debounce time; increase if the output flickers

unsigned long lastDebouncedTime = 0; // the last time the output pin was toggled

unsigned long debouncedDelay = 50; // the debounce time; increase if the output flickers

unsigned long lastDebounceeTime = 0; // the last time the output pin was toggled

unsigned long debounceeDelay = 50; // the debounce time; increase if the output flickers

unsigned long lastDebouncefTime = 0; // the last time the output pin was toggled

unsigned long debouncefDelay = 50; // the debounce time; increase if the output flickers

void setup() {

 pinMode(buttonPin, INPUT);

 pinMode(buttonbPin, INPUT);

 pinMode(buttoncPin, INPUT);

 pinMode(buttondPin, INPUT);

 pinMode(buttonePin, INPUT);

 pinMode(buttonfPin, INPUT);

 pinMode(ledPin, OUTPUT);

 // set initial LED state

 digitalWrite(ledPin, ledState);

 //digitalWrite(led1, LOW);

 Serial.begin(38400); // Default communication rate of the Bluetooth module

}

void loop() {

 if(Serial.available() >0){ // Checks whether data is comming from the serial port

 state = Serial.read(); // Reads the data from the serial port

 }

 delay(10);

 // read the state of the switch into a local variable:

 int reading = digitalRead(buttonPin);

 int readingb = digitalRead(buttonbPin);

 int readingc = digitalRead(buttoncPin);

 int readingd = digitalRead(buttondPin);

 int readinge = digitalRead(buttonePin);

 int readingf = digitalRead(buttonfPin);

 // check to see if you just pressed the button

 // (i.e. the input went from LOW to HIGH), and you've waited

 // long enough since the last press to ignore any noise:

 // If the switch changed, due to noise or pressing:

 ///

 //**Push Button 1

 if (reading != lastButtonState) {

 // reset the debouncing timer

 lastDebounceTime = millis();

 }

 if ((millis() - lastDebounceTime) > debounceDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (reading != buttonState) {

 buttonState = reading;

 // only toggle the LED if the new button state is HIGH

 if (buttonState == HIGH) {

 Serial.write('1'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

//

//**Push Button 2

 if (readingb != lastButtonbState) {

 // reset the debouncing timer

 lastDebouncebTime = millis();

 }

 if ((millis() - lastDebouncebTime) > debouncebDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (readingb != buttonbState) {

 buttonbState = readingb;

 // only toggle the LED if the new button state is HIGH

 if (buttonbState == HIGH) {

 Serial.write('2'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

 //

 //**Push Button 3

 if (readingc != lastButtoncState) {

 // reset the debouncing timer

 lastDebouncecTime = millis();

 }

 if ((millis() - lastDebouncecTime) > debouncecDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (readingc != buttoncState) {

 buttoncState = readingc;

 // only toggle the LED if the new button state is HIGH

 if (buttoncState == HIGH) {

 Serial.write('3'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

 ///////////////////////////////////

 //**Push Button 4

 // If the switch changed, due to noise or pressing:

 if (readingd != lastButtondState) {

 // reset the debouncing timer

 lastDebouncedTime = millis();

 }

 if ((millis() - lastDebouncedTime) > debouncedDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (readingd != buttondState) {

 buttondState = readingd;

 // only toggle the LED if the new button state is HIGH

 if (buttondState == HIGH) {

 Serial.write('4'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

//

//**Push Button 5

 if (readinge != lastButtoneState) {

 // reset the debouncing timer

 lastDebounceeTime = millis();

 }

 if ((millis() - lastDebounceeTime) > debounceeDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (readinge != buttoneState) {

 buttoneState = readinge;

 // only toggle the LED if the new button state is HIGH

 if (buttoneState == HIGH) {

 Serial.write('5'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

 //

 //**Push Button 6

 if (readingf != lastButtonfState) {

 // reset the debouncing timer

 lastDebouncefTime = millis();

 }

 if ((millis() - lastDebouncefTime) > debouncefDelay) {

 // whatever the reading is at, it's been there for longer

 // than the debounce delay, so take it as the actual current state:

 // if the button state has changed:

 if (readingf != buttonfState) {

 buttonfState = readingf;

 // only toggle the LED if the new button state is HIGH

 if (buttonfState == HIGH) {

 Serial.write('6'); // Sends '1' to the master to turn on LED

 ledState = !ledState;

 }

 }

 }

 ///////////////////////////////////

 // set the LED:

 digitalWrite(ledPin, ledState);

 // save the reading. Next time through the loop,

 // it'll be the lastButtonState:

 lastButtonState = reading;

 lastButtonbState = readingb;

 lastButtoncState = readingc;

 lastButtondState = readingd;

 lastButtoneState = readinge;

 lastButtonfState = readingf;

}

Connecting thr computer to the Arduino inside the Latch Mechanism Control Box the following figure

10. Shows the outputs of the commands of pressing the push buttons in the order of: 1, 3, 2, 3, 4, 5, 6.

*****If 6 is pressed the code will save pressed buttons but not act on them until Stepper motor is

done moving. If buttons are pressed while stepper motor is moving, when it is done moving Arduino

will have to be reset if the user started pressing buttons randomly to see if anything works because

the Arduino will follow the commands and may result in unwanted outputs.

Figure 10. Screenshot of the Latch Mechanism Control Box output Serial Monitor

Trouble Tracking

Table 9. TRouble Tracking For Latch Mechanism Control Box

Troubleshooting The Test Set-Up

Problem Solution

Motors Do Not Turn on • Make sure there is a 12V power source
connected

• Make sure set up was properly done by
referencing

https://learn.adafruit.com/adafruit-motor-shield-
v2-for-arduino/overview

Motor turns on but do not rotate • Too much torque may be applied and
motor cant handle it

• Lower torque applied to it

Theres no power inside the Latch Mechanism
Control box

• Make sure the toggle switch in front of
the box is set to automatic mode.

• Remove power and safely check wiring

HC-05 Bluetooth Module getting HOT • Immediately but Safely remove power
from system

• Wait until module has cooled down
because now Module is a Burning
Hazard

• After it has cooled Check wiring as seen
in figure 6

• If module not turn On it will need to be
replaced

Relays flipping randomly • Immediately but Safely remove power
from system

https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview

• The relays will flip randomly when code is
downloaded

• Make sure relays not loose from their
mounts

Code not downloading to Arduino • Make sure Bluetooth Module not
connected

Future Goals

 In the future first the Motors will have to worked on due to the problem of the DC motor pulling

too much current and the Adafruit Motor shield works best up to 2Amps preferably and current the DC

motor is pulling above 3Amps which will cause damage to the motor shield and Arduino. Getting a

higher current rated motor shield is not an ideal solution because there is also a current limit that the

Power Rails can handle before a fuse blowing. Our solution was 3-D printed Arm instead of the

Aluminum arm which drew less current but it was still over what was desired. Keep in Mind that the Arm

still has to be able to pull the chain to unlatch the slit so the Arm can’t be too light otherwise it make

bend or break trying to unlatch.

 Instead of using push buttons to actuate the components inside the Latch Mechanism Control

Box, the Labview Program would send data to the DAQ at the Main Control Box which would send

commands to an Arduino and through Bluetooth communication it would send the commands to the

Bluetooth module inside the Control to actuate the components.

 Lastly there is still potential on moving the Latch Mechanism forward with possible

reconsiderations on parts used and code integration with the Main System with safety always being a

priority when working on improvements.

References

[1] https://www.itead.cc/wiki/Serial_Port_Bluetooth_Module_(Master/Slave)_:_HC-05

[2] http://history-computer.com/ModernComputer/Basis/modem.html

[3] https://www.digikey.com/product-detail/en/PPTC061LFBN-RC/S7004-

ND/810145?WT.mc_id=IQ_7595_G_pla810145&wt.srch=1&wt.medium=cpc&&gclid=CjwKEAjw3KDIBRC

z0KvZlJ7k4TgSJABDqOK7BIk8l8eaiJlCwAxlmhDUCGraPAY8rJzp0RnMZBR72hoChh7w_wcB

[4] http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-

bind-and-link/

[5] http://www.arduino.cc/en/Tutorial/Debounce

Mentioned Links

Motor Shield Overview- https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview

Stepper Motor- https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/using-stepper-motors

DC Motor- https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/using-dc-motors

 Pressure Sensor - https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr

**Wiring Schematics was built using Open Source Software fritzing-http://fritzing.org/home/

https://www.digikey.com/product-detail/en/PPTC061LFBN-RC/S7004-ND/810145?WT.mc_id=IQ_7595_G_pla810145&wt.srch=1&wt.medium=cpc&&gclid=CjwKEAjw3KDIBRCz0KvZlJ7k4TgSJABDqOK7BIk8l8eaiJlCwAxlmhDUCGraPAY8rJzp0RnMZBR72hoChh7w_wcB
https://www.digikey.com/product-detail/en/PPTC061LFBN-RC/S7004-ND/810145?WT.mc_id=IQ_7595_G_pla810145&wt.srch=1&wt.medium=cpc&&gclid=CjwKEAjw3KDIBRCz0KvZlJ7k4TgSJABDqOK7BIk8l8eaiJlCwAxlmhDUCGraPAY8rJzp0RnMZBR72hoChh7w_wcB
https://www.digikey.com/product-detail/en/PPTC061LFBN-RC/S7004-ND/810145?WT.mc_id=IQ_7595_G_pla810145&wt.srch=1&wt.medium=cpc&&gclid=CjwKEAjw3KDIBRCz0KvZlJ7k4TgSJABDqOK7BIk8l8eaiJlCwAxlmhDUCGraPAY8rJzp0RnMZBR72hoChh7w_wcB
http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-bind-and-link/
http://www.martyncurrey.com/connecting-2-arduinos-by-bluetooth-using-a-hc-05-and-a-hc-06-pair-bind-and-link/
https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/overview
https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr

