
All based on WiFiCalling extension from Kumaraswamy.

SCREEN 1 INITIALIZE

1. Set 10 ms period of Clock1, used to poll for new data received and enabled

2. Set 10 ms Clock2, parser of buffer received (started once when Message Received event raised). This

delay is needed because the data just received cannot be parsed immediately but a delay is required

(not pretty clear why, but it works).

3. Keep screen on (Taifun extension)

4. Start Discovery yo find any WiFi peer.

EVENT Devices.Available

1. Whenever a new WiFi source is discovered this event is raised and if not already connected (bool

“spegni”), fills the listview with the WiFi sources names.

2. If the wanted peer’s name is catched, starts Clock4 that parses the listview one element at a time, to

find which one contains the name of the wanted peer. See note below.

➢ A delay is required between the finding of the wanted peer name in the listview loaded by this event

before it can be passed to the WiFiCalling.Connect method.

https://community.appinventor.mit.edu/u/kumaraswamy

CLOCK4 (period 2000 ms)

1. Disables itself

2. It parses the listview, one element at a time, to find which one contains the name of the wanted

peer. This is required since the WiFiCalling.Connect method wants an index of the listview to connect

the relevant peer.

3. Once found, its element number (index) is passed to the WiFiCalling.Connect method and exits from

loop. It exits also if no match is found. A label is set accordingly.

➢ It is re-enabled if the Discovery method finds a new peer available.

➢ The above feature is useful because it retries to connect the selected peer untili it succeeds.

➢ Disabled finally by the event Connected. See below.

EVENT CONNECTED

1. When the selected peer is connected the Clock4 is disabled and the bool “spegni” that disables

further attempts to connect is set.

2. The Clock5 that switches off the Searching method is also triggered. This delay is required otherwise

the connection fails (not clear why, but without this delay, it fails).

CLOCK5 (period 2000 ms)

1. Fires only once. Stops the Discovery method, once connected successfully to the wanted peer.

CLOCK1 (period 10 ms)

1. Disables itself

2. Cheks for data in incoming buffer. If any, it reads all the buffer, till the end

3. Re-enables itself

EVENT Message.Received

➢ Event raised when a complete message has been received.

1. Moves the read buffer to a working variable

2. Triggers the Clock2 to parse the incoming buffer (see below)

CLOCK2 ((period 10ms)

➢ Triggered by EVENT Message.Received

➢ Any time the incoming buffer has been filled and read by Clock1, it can operate.

1. It parses the content of the read buffer in order to find the requested data (to be customized on

apps).

2. If the read buffer does not contain the expected data, it starts a CLOCK3 to cancel the previous label

and to set it to “---” (just dashes).

3. Disables itself

CLOCK3 ((period 2000ms)

➢ Triggered by Clock2 when the incoming buffer does not contain the acceptable data.

1. Cancels the last shown data and puts some dashes in place

2. Disables itself.

FLOW (in a nutshell)

1. Start the clock for receiving

2. Start discovery

3. Acquire any new peer

4. If the peer name is the wanted one, start the timer to create the index by parsing the listview (without

the need to pick manually)

5. When found the name in the list, pass the relevant index to the Connection method.

6. Once connected (it might need several attempts granted by the repetition of the Clock4) start a timer

to stop the Discovery of further peers.

7. When the Clock4 elapses, it really stops any new peer acquisition.

8. The data acquisition is demanded to the Message.Received event (while Clock1 receives the raw

buffer) which enables Clock2 to parse the buffer.

