
A NON BLOCKING WAIT FUNCTION

Rev 0.1 Pag. 1 of 3

A “TRUE” DELAY FUNCTION FOR AI2 BY USING THE ITOO EXTENSION

The following notes are aimed at showing how to implement a non blocking delay function for AI2.

To keep the screen ON, the Taifun’s extension TaifunTools is used.

The timer tick is set to 1 (one) second in this example. Therefore the delay can be only multiple of 1 second.

The StoreProperty block allows to pass this data to the task that will run in background thanks to “itoo”.

The StartProcess procedure executes that steps necessary to start the hidden task running behind the scenes.

Here below its contents:

The Flag is the semaphore that is used to stop/release the app flow when the delay is running.

The hidden process is started once, and runs forever, till the app is closed, to avoid the popup title box to

appear at any time it is invoked.

A NON BLOCKING WAIT FUNCTION

Rev 0.1 Pag. 2 of 3

The BackgroundClock is the process that runs hidden. It receives the timer tick by using the FetchProperty

block which is then set to the Clock1 TimerInterval, then the Clock1 is started.

Since in the background the events have no effect, the RegisterEvent block of itoo does the job on event’s

behalf. The procedure Tick will do the job of the Cock1.Timer standard event. Please note that the parameter

“x”, though not used, MUST be present for itoo to work propoerly.

The following procedure works in place of the Clock1.Timer event:

The “event” above runs every second, , and checks if a timeout has been set and if it is still greater or equal

than 0. If already 0, the timeout has elapsed and the procedure exits without nothing to do.

When the Timeout reaches 0 in its countdown, the flag “Flag” is set to EXIT and stored by using the block

SToreProperty, therefore the app can be released to continue.

A NON BLOCKING WAIT FUNCTION

Rev 0.1 Pag. 3 of 3

The following, is the “core” procedure.

The green circled blocks make available to itoo the Flag data (the ptoperty Text of a label), that by default

contains “WAITING” string, and the quantity of seconds to wait, extracted by the TextBox1, set by the user.

The red circled blocks are a while…do loop that waits for the change of the label L_Status.Text.

This while…do in the standard behaviour of AI2 will never exit, since there is no way to change the label text.

On the contrary, itoo is running on its own, and when the timeout has elapsed, it is capable to set the Flag

value to “EXIT” (which is no longer = “WAITING”) and to make available this value to the app by means of the

StoreProperty block.

In this way the while test will become “false” because the L_Status.Text has been changed by itoo, therefore

it exits, leaving the app to continue from the instruction immediately after the while.

The blue circled blocks are just for aestethical purposes: when the timeout has elapsed a “buzz” is emitted,

to wake up the user () and the Clock2 is enabled so to allow the L_Status.Text to show in sequence “EXIT”

and “WAITING” (again).

This is just an example, it is up to you to go further and to discover other powerful functionalities of AI2

empowered by itoo.

PS:

Not used in this version, provision for future expansions

