
Family Chat a chat app tutorial using MIT CloudDB database by

SteveJG

Here is Family Chat, an App Inventor 2 app and tutorial using the MIT CloudDB to connect
several users in a live chat. This tutorial shows a way to build a Chat app using CloudDB.

Family Chat uses Responsive Sizing and is designed on a Tablet. The blocks might need
minor adjustments to run properly (scale) on your device.

You must test this on your Android device. CloudDB apps presently will not run in the stock
emulator that comes with App Inventor 2. This is an Intermediate to advanced level Project.

Users can only share the same chat room if the app is compiled and a copy of the apk is placed on each
user’s Android. All users must have a copy of the master apk on the phone/tablet they use to
communicate with each other. You cannot see each other's chats unless all users install the same apk.

Family Chat

Family Chat allows you and your family or friends to have a live chat provided all members of
your circle have a copy of this app on their phone/tablets. You do not need a personal Redis
database account to use Cloud with this sharing app, the app uses the server MIT provides for

testing. If you want/require privacy, a personal Redis DB account may be required.

Family Chat displays up to 10 comments at one time on the screen. The oldest message is
replaced by the newest chat as the chat room fills up.

A time stamp and a provision for an auto ‘signature’ for family members is included (use the
check box to select your signature (Mom,Dad etc. in this example ... change these options to
Bill, Mary, John etc. with your own coding modification). What USER you check is saved in a
TinyDB so each user will have their own signature. An example ‘canned’ message about
groceries shows a methodology to add shortcuts to your version of the app; modify and
enhance this feature if you require the functionality. If the GPS box is checked, the app
provides a street address (if available in Google's database) . When checked, you can include
use if you use the I am at button (and an address is available in the Google database). The
Clear button clears the input field; that simple. SEND, sends your chat message to everyone
who has a copy of your app.

Install compiled copies of the app on various devices, connect with a WIFI to the Internet,and
the devices using Family Chat can engage in a live chat. The phones/tablets share the default
database located in the DEFAULT RedisServer. At MIT.

When you test this app, use the default server. When you load the aia, the compiler will
automatically assign the Token When you are ready to finalize your version, you probably will
need to change to your own Redis server.

The MIT sponsored service may not be a secure database. Anyone who has the code can join
the chat if they connect using the RedisPort, RedisServer and Token used in your app (see
MIT’s documentation). For that reason, you may want to password protect your app (add
appropriate coding not described here) and provide your own ProjectBucket name prior to
compiling and using the app.

.

Testing:
After you build the app, test it before you share copies of your apk. When you send a message on 'your'
app using the Send button, the message should show in the chat room (the yellow TextBox area)

provided your device is connected to the Web using WIFI. If the message displays properly after
you post using the Send button then close the app and then restart the app to check if the message was
stored. You should see displayed the previous chat in the chat room when you restarted the app. If the
conversation shows the last message, the app is working properly. If you do not see what you sent using
Send, there is probably a coding error and or typo. in your version of Family Chat.

If the chat shows on the chat room display, you are ready to compile the app. Compile and send to and
share the master apk with each person you want to use Family Chat. Test the app perhaps by sending
perhaps from your tablet to your phone or to a friend's Android. The database will be updated even if one
of the chat circle does not have their app turned on. If someone does not have the app on when your

chat message is sent; any user will receive the message when they later turn on their copy of the app. Be
aware this version of the app only ‘saves’ the last 10 messages.

The Designer Screen

The ProjectID is set to famillychatCloudDB; set that to whatever you want (MyChat, TestChat,
etc.)

 This app works as of the release of App Inventor 2 version 182 released early 2020. An account
sponsored by MIT is configured for the MIT sponsored service in the app. Family Chat uses that
service. You do not have to use that service for your account (the MIT documentation explains how you
can use your own account).

The Blocks

AddMessage Blocks

This adds a message including a time stamp and the user ‘signature’ (saved in theUser
variable).

The Buttons

Button1 closes the app.
Button10 clears the text type in fields.
Button8 is an example ‘canned’ message.
Button9 sends the address of the user to the type in field using GPS or a WIFI geolocation.
SendButton actually sends your message to the Family Chat.

The Checkboxes

The first four check boxes store and remember the user of the Family Chat app on individual
devices. The if routines select the current ‘signature’ of a chat user.

Checkbox5 controls the GPS (turns it on and off).

Display Messages

This is the procedure to display the chat messages.

The CloudDB Control

Communicate with the CloudDB.

Miscellaneous Blocks

The LocationSensor is required to post location information about the current user.

The Backpressed control is provided (empty) to prevent users from inadvertently terminating the
app by pressing the virtual back button on the device.

Screen1.Initialize

Provide the initial status for the app.

The Global Variables

The aia File
A Project aia file is attached.

Important Facts
 Have fun with the coding for personal use. Use the algorithms and ideas in your own app and
enjoy coding.

